YAGUPOL'SKIY, L.M.; VISHNEVSKAYA, G.O.; YAVORSKIY, D.F.; GRUZ, B.Ye.;
MARSHMENKO, A.S.; KHASKIN, I.G.; GOHSETSKAYA, Ya.V.; KIPRIANOV,
A.I.

Improvement in the method for producing p-nitrophenylchloromethylcarbinole. Med.prom. 13 no.3:20-21 Mr '59.

(MIRA 12:5)

1. Institut organicheskoy khimii AN USSR 1 Kiyevskiy khimiko-farmatäävvtichsskiy zavod imeni M.V.Lomonosova.

(METHANOL)

AUTHORS:

Yagupol'skiy, L. M., Marenets, M. S.

SOV/79-29-1-58/74

TITLE:

Synthesis of the Derivatives of Phenyl Trifluoro Methyl Sulfone (Sintez proizvodnykh feniltriftormetilsul'fona)

PERIODICAL:

Zhurnal obshchey khimii, 1959, Vol 29, Nr 1,

pp 278 - 283 (USSR)

ABSTRACT:

It was the aim of the present study to prepare the intermediate products for the synthesis of azo- and cyanine dyes which contain a trifluoro methyl sulfonyl group. 3-amino-4-fluoro- and 3-amino-4-chloro-phenyl trifluoro methyl sulfones were obtained according to the mentioned scheme 1. From 3-nitro-4-chloro-phenyl trifluoro methyl sulfone by means of sodium methylate 3-nitro-4-methoxy phenyl trifluoro methyl sulfone was produced which was reduced to the amine

Card 1/2

Apart from this the following substances were synthesized:

sov/79-29-1-58/74 Synthesis of the Derivatives of Phenyl Trifluoro Methyl Sulfone

2-methyl-6-trifluoro methyl sulfonyl benzimidazole, 2-5-trifluoro methyl sulfonyl benzthiazole according to scheme 2. The latter base was transformed into the quaternary salt from which carboxy anine and the dye styril were obtained. The group CF3SO2 in position 5 of the benzthiazole nucleus as well as other electronegative substituents in the same position (NO2, CF3, Refs 1,2) almost dees not change the absorption maximum of thiacarbocyanine. In the dye styril the group CF3SO2 shifts the absorption maximum to 25 mµ towards the side of long waves (Table). 3-nitro-4-hydrazine phenyl trifluoro methyl sulfone was also obtained. There are 1 table and 9 references, 5 of which are Soviet. Institut organicheskoy khimii Akademii nauk Ukrainskoy SSR (Institute of Organic Chemistry of the Academy of Sciences,

ASSOCIATION:

Ukr SSR)

SUBMITTED:

November 25, 1957

Card 2/2

CIA-RDP86-00513R001961820006-8 "APPROVED FOR RELEASE: 03/14/2001

Yagupol'skiy, L. M., Troitskaya, V. I. SOV/79-29-2-42/71

Fluor-containing Trichloro-phosphazo-sulfonaryls and Their AUTHORS:

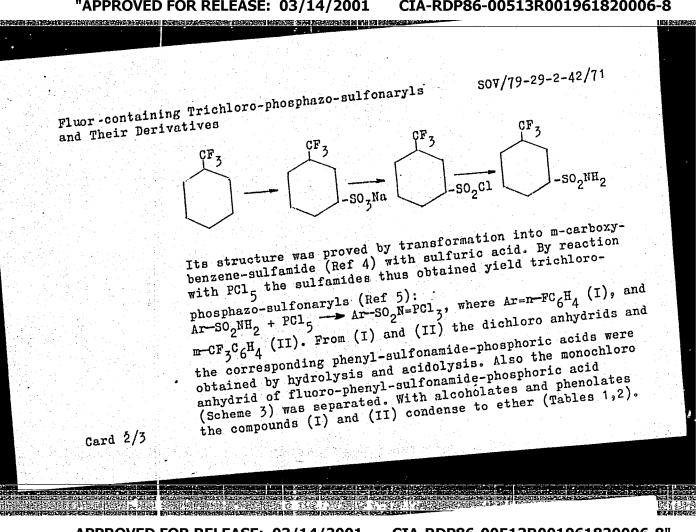
Derivatives (Ftorsoderzhashchiye trikhlorfosfazosul'fonarily

i ikh proizvodnyve)

Zhurnal obshchey khimii, 1959, Vol 29, Nr 2, pp 552-556 (USSR)

At present several active insecticides with fluorine atoms in PERIODICAL:

the molecule (Ref 1) are known. Preparations, simultaneously containing fluorine and phosphorus atoms are of special interest. The synthesis and investigation of trichloro-phosphazosulfonaryls and their derivatives for such insecticides as contain fluorine atoms or trifluoro-methyl groups as substituents in the aromatic nucleus are the aim of the present article. For this purpose, the n-fluoro-benzene-sulfamide


(Ref 3) and the hitherto unknown m-trifluoro-methyl-phenylsulfamide were synthesized. The latter was obtained according

to the scheme

card 1/3

TITLE:

ABSTRACT:

CIA-RDP86-00513R001961820006-8" **APPROVED FOR RELEASE: 03/14/2001**

Fluor-containing Trichloro-phosphazo-sulfonaryls

SOV/79-29-2-42/71

The esters of n-fluoro-and m-trifluoro-methyl-sulfonamidephosphoric acids are colorless compounds of crystalline nature.

Applied as insectioides the preparations 1 and 7 specified
Applied as insectioides the preparations 1 and 2 tables and
in table 1 exhibit little activity. There are 2 tables and
5 references, 2 of which are Soviet.

ASSOCIATION: Institut organicheskoy khimii Akademii nauk USSR (Institute
of Organic Chemistry of the Academy of Sciences UKrSSR)

January 8, 1958

Card 3/3

sov/79-29-4-58/77 Yagupol'skiy, L. M. Cyanin Dyes Containing Fluorine (Tsianinovyye krasiteli, soder-5(3) zhashchiye ftor). VI. Synthesis of Cyanin Dyes From 5-Trifluo-AUTHOR: methoxy-6-acetylaminobenzothiazole (VI. Sintez tsianinovykh krasiteley iz 5-triftormetoksi-6-atsetilaminobenztiazola) TITLE: Zhurnal obshchey khimii, 1959, Vol 29, Nr 4, pp 1312-1315 (USSR) In the previous paper (Ref 1) the synthesis of thiacarbocyanins containing trifluomethoxy groups as substituents in positions 5 PERIODICAL: and 6 of the benzothiazole nucleus was described. The introduction of methoxy groups into the 5,5'-positions of 6,6'-disub-ABSTRACT: stituted thiacarbocyanins is known to cause an additive shift of absorption maximum of the dyes toward the long-wave range of the spectrum. It was interesting to find out in what way the trifluomethoxy groups Introduced into positions 5,5' would influence the absorption maxima of 6,6'-disubstituted thiacarbocyanins. The initial material used for the synthesis of these dyes was the ether (I), which was obtained from a mixture of the relevant nitroacetylamino derivatives (Ref 1). The structure of this ether was proved by removing the acetyl from it and recard 1/3

sov/79-29-4-58/77

Cyanin Dyes Containing Fluorine. VI. Synthesis of Cyanin Dyes From 5-Trifluomethoxy-6-acetylaninobenzothiazole

ducing it to the diamine which, like the other paradiamines, exhibited an intense indamine reaction with iron trichloride. Like the corresponding methoxy derivative (Ref 3) it was easily oxidized to the p-quinone (Scheme 1). Compound (I) was transformed into a benzothiazole (IV) according to reference 1 (Scheme 2). By diazotizing the amine (IV) and substituting other groups new bases were obtained, viz. 6-chloro-, 6-iodo-, and 6-methylmercapto-5-trifluomethoxy-2-methylbenzothiazoles, which, in turn, were transformed into the quaternary salts and thiacarbocyanins. The absorption maxima of the synthesized cyanin dyes in alcohol are given in the table where for comparative purposes, the absorption maxima of the corresponding dyes without trifluomethoxy groups are also given. Therefrom it may be concluded that the trifluomethoxy group in the 5,5'-positions of the benzothiazole nucleus has a slight effect only on the absorption maxima of the dyes containing weakly electropositive substituents in the 6,6'-positions. There are 1 table and 3 Soviet references.

Card 2/3

CIA-RDP86-00513R001961820006-8" APPROVED FOR RELEASE: 03/14/2001

SOV/79-29-4-58/77

Cyanin Dyes Containing Fluorine. VI. Synthesis of Cyanin Dyes From 5-Trifluomethoxy-6-acetylaminobenzothiazole

ASSOCIATION: Institut organicheskoy khimii Akademii nauk SSSR (Institute of Organic Chemistry of the *cademy of Sciences, USSR)

SUBMITTED: March 6, 1958

Card 3/3

sov/79-29-7-68/83 Yagupol'skiy, L. M., Troitskaya, V. I. Cysnine Dyes Containing Fluorine (Tsianinovyye krasiteli, soder-5 (3) AUTHORS: zhashchiye ftor). VII. Synthesis of Cyanine Dyes From 6-Trifluoro-methyl and 6-Trifluoro-methyl-sulfonyl-benzimidazole TITLE: (VII. Sintez tsianinovykh krasiteley iz 6-triftormetil- i 6-triftormetilsul'fonilbenzimidazola) Zhurnal obshchey khimii, 1959, Vol 29, Nr 7, pp 2409-2416 (USSR) The cyanine dyes, derivatives of benzimidazole, are but little PERIODICAL: investigated with some exceptions (Refs 1-5). The simplest dye of this series, the 1,1',3,3'-tetramethyl-imidocarbo cyanine ABSTRACT: icdide (formula on page 2409) was first synthesized by Ogata (Ref 1) and then by A. I. Kiprianov (Ref 2). The purpose of the present paper was the synthesis of the imidocarbo cyanines which have as substituents electrophilic trifluoro-methyl groups and drifluoro-methyl-sulfonyl groups. The necessary derivatives of benzimidazole were obtained according to scheme 1 and the quaternary salts from these bases (Formula 2). From the quaternary salts the cyanine dyes were synthesized, formula and absorption maxima of which are presented in tables 1 and 2. The symmetrical imidocarbo cyanine dyes were obtained by boiling the card 1/3

Cyanine Dyes Containing Fluorine. VII. Synthesis of SOV/79-29-7-68/83 Cyanine Dyes From 6-Trifluoro-methyl and 6-Trifluoro-methyl-sulfonyl-benzimidazole

quaternary salts with orthoformic acid in nitro-benzene according to A. Van Dormael (Ref 6). The introduction of the trifluoro-methyl group and trifluoro-methyl-sulfonyl group (Ref 8) into the benzthiazole nucleus of the thiacarbo-cyanine hardly changes the absorption maximum of the dye. Table 2 gives formulae and absorption maxima of two unsymmetrical cyanine dyes and two rhodocyanines. The substitution of ethyl radicals for the methyl radicals on the nitrogen atoms of the benzimidazole nucleus causes considerable changes in the absorption maximum of the imidocarbo cyanines. The synthesis of 2-methyl-3-phenyl-6-trifluoro-methyl- and 2-methyl-3-ethyl-6-trifluoro-methylsulfonyl-benzimidazole was thus described. These bases, like the 2-methyl-3-phenyl-6-trifluoro-ethyl-sulfonyl-benzimidazole previously described, were then transformed into quaternary salts from which 8 symmetrical imidocarbo cyanines, 2 unsymmetrical and 2 rhodocyanines were obtained. There are 3 tables and 12 references, 6 of which are Soviet.

card 2/3

Cyanine Dyes Containing Fluorine. VII. Synthesis of SOV/79-29-7-68/83
Cyanine Dyes From 6-Trifluoro-methyl and 6-Trifluoro-methyl-sulfonylbenzimidazole

ASSOCIATION: Institut organicheskoy khimii Akademii nauk Ukrainskoy SSR
(Institute of Organic Chemistry of the Academy of Sciences of the Ukrainian SSR)

SUBMITTED: June 5, 1958

Card 3/3

5(3) AUTHORS:

Yagupol'skiy, L. M., Troitskaya, V. I. S

SOV/79-29-8-63/81

٤

TITLE:

Cyanin Dyes Containing Fluorine. VIII. Synthesis of Cyanin Dyes From 4,6-Bis-(trifluoromethyl),-4-chloro-6-trifluoromethyl and

4.Chloro-6-trifluoromethylsulfonylbenzimidazole

PERIODICAL:

Zhurnal obshchey khimii, 1959, Vol 29, Nr 8, pp 2730-2736 (USSR)

ABSTRACT:

In a previous paper (Ref 1) the synthesis of imidocarbocyanins containing as substituents in position 6 of the benzimidazole nucleus trifluoromethyl- and trifluoromethylsulfonylgroups was described. In the present paper tetrasubstituted imidocarbocyanins of the general formula (A) were obtained. The benzimidazole derivatives which were used as initial products and the quaternary salts were synthesized according to the already described method (Ref 1). Table 1 gives formulas and absorption maxima of the symmetrical dyes in alcohol. By way of comparison the absorption maxima of the corresponding dyes which do not contain substituents in position 4 of the benzimidazole-nucleus are also given. As is seen from the data of table 1, the introduction of trifluoromethyl groups into positions 4,4' of 6,6-bis-(trifluoromethyl)-imidocarbocyanin (dyes I - III) causes a shift of the absorption

Card 1/2

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001961820006-8"

Cyanin Dyes Containing Fluorine. VIII. Synthesis of SOV/79-29-8-63/81 Cyanin Dyes From 4,6-Bis-(trifluoromethyl),-4-chloro-6-trifluoromethyl and 4-Chloro-6-trifluoromethylsulfonylbenzimidazole

> maximum towards the long waves of about 11 - 13 m/l, the introduction of the chlorine atom into the same positions a shift of only 4 m μ (dye IV) and a shift of about 3 - 6 m μ in the direction of 6.6'-bis-(trifluoromethylsulfonyl)-imidocarbocyanin (dyes V-VII). Table 2 gives formulas and absorption maxima of the 4 asymmetrical cyanin dyes. Tables 3 and 4 give the yield and melting points of symmetrical and asymmetrical dyes. There are 4 tables and 5 references, 3 of which are Soviet.

Beforenskieren bei Serberen in der Serberen der der der der

ASSOCIATION: Institut organicheskoy khimii Akademii nauk Ukrainskoy SSR (Institute of Organic Chemistry of the Academy of Sciences of the Ukrainskaya SSR)

SUBMITTED:

July 10, 1958

Card 2/2

507/79-29-9-60/76 5(3) Yagupol'skiy, L. M., Fialkov, Yu. A. AUTHORS: 2-Trifluoromethyl Naphthalene and Its Derivatives TITLE: Zhurnal obshchey khimii, 1959, Vol 29, Nr 9, pp 3082-3086(USSR) PERIODICAL: The trifluoromethyl derivatives of naphthalene have hitherto ABSTRACT: not been investigated. The synthesis of 1-trifluoromethyl naphthalene briefly mentioned in an American patent (Ref 1) is very insufficiently described, i.e. no constants and no exact course of synthesis, both of the final product and of 1-trichloromethyl naphthalene as initial product are given. The trichloromethyl derivatives of naphthalene are difficultly accessible (Ref 2). In the experiment made by A. N. Nesmeyanov (Ref 3) to obtain a-trichloromethyl naphtha-

> the corresponding oxynaphthoic acids with PCl, were used as initial products for the synthesis of the trifluoromethyl compounds of the naphthalene series. From the three o-oxynaphthoic

lene by thermal decomposition of the copper oxide salt of trichloroacetic acid in an excess amount of naphthalene it could not be separated. For this reason the o-chlorotrichloromethyl derivatives of naphthalene which were obtained from

Card 1/4

and co-workers

SOV/79-29-9-60/76

2-Trifluoromethyl Naphthalene and Its Derivatives

acids, R. Wolffenstein (Ref 4) succeeded in transforming only 1-oxy-2-naphthoic acid into 1-chloro-2-trichloromethyl naphthalene; the yield is not specified. The remaining acids could be identified only in the form of the corresponding o-chloromaphthoic acids. The authors repeated Wolffenstein's experiments. They succeeded in synthesizing 1-chloro-2-trichloromethyl naphthalene from 1-oxy-2-naphthoic acid in a yield of 35%. The replacement of chlorine by fluorine in 1-chloro-2-trichloromethyl naphthalene with SbF3 in the presence of SbCl₅ and without the latter gave no positive results. The fluorination of 1-chloro-2-trifluoromethyl naphthalene succeeded only in solvents. In chlorobenzene a yield of 90% of 1-chloro-2trifluoromethyl naphthalene was obtained. 1-chloro-2-trifluoromethyl naphthalene was transformed, on heating with copper cyanide in the presence of pyridine, into the nitrile of 2-trifluoromethyl-1-naphthoic acid from which the amide was obtained. This amide yielded,

Card 2/4

SOV/79-29-9-60/76

2-Trifluoromethyl Naphthalene and Its Derivatives

according to the scheme described, 1-amino-2-trifluoromethyl naphthalene via 2-trifluoromethyl-1-naphthoic acid according to Hofmann. In the Hofmann reaction, which proceeds smoothly, the forming 1-amino-2-trifluoromethyl naphthalene hydrolyzes on heating in alkaline medium. For this reason the amine had to be removed by distillation from the reaction zone already at the moment of the formation. Thus, the otherwise low yield could be increased to 61%. By this method the instability of the trifluoro methyl group in 1-amino-2trifluoromethyl naphthalene towards aqueous alkali lyes was found (Ref 7). From the amine (VI) and α -naphthylamine (Ref 8) the dyestuffs (A) were obtained by diazotization and coupling with dimethyl aniline. As may be seen from the table the introduction of the trifluoromethyl group in of the dyestuff (A) shifts its absorption maximum in the direction of the short waves in neutral as well as in acid solutions. There are 1 table and 9 references, 1 of which is Soviet.

ASSOCIATION: Institut organicheskoy khimii Akademii nauk Ukrainskoy SSR Card 3/4 (Institute of Organic Chemistry of the Academy of Sciences

2-Trifl	uoromethyl Naj	phthalene and Its Der	S0V/79-29-9 ivatives	-60/76	
	of the	Ukrainskaya SSR)			
SUBMIT	TED: July 18	3, 1958			
Card 4/	4				
경기 (1985년 - 1985년 - 1985년) 일본 기계 (1985년 - 1985년)					

CIA-RDP86-00513R001961820006-8 "APPROVED FOR RELEASE: 03/14/2001

507/79-29-9-61/76 5(3) Yagupol'skiy, L. M., Shtepanek, A. S. AUTHORS:

Synthesis of the Nitro Derivatives of ω -Chlorostyrene TITLE:

Zhurnal obshchey khimii, 1959, Vol 29, Nr 9, pp 3086-3092 PERIODICAL:

(USSR)

The authors tried to use the easily accessible p- and m-nitro-ABSTRACT:

phenyl chloromethyl carbinols (Refs 1, 2) for the synthesis of the corresponding nitro derivatives of W-chlorostyrene by substituting the chlorine for hydroxyl with a subsequent separation of HCl according to scheme (A). In the attempt of substituting chlorine in compound (I) for hydroxyl with the aid of thionyl chloride the already known compound (V) was obtained instead of the expected compound (II). In the action of PC1 on (I) compound (II) smoothly forms, which reacts with triethylamine in alcohol according to scheme (B), and which leads to compound (IV). The structure of compound (IV) was proved according to scheme 2. m-Nitrophenyl chloromethyl carbinol (VI) which together with thionyl chloride, as mentioned above, gives compound (VII) reacts in a similar way as the para-derivative. PCl, transforms compound (VI) into

the dichloride (VIII). In the separation of HCl by an alcoholic Card 1/3

307/79-29-9-61/76

Synthesis of the Nitro Derivatives of ω -Chlorostyrene

solution of triethylamine an uncrystallizable oil results. In contrast to it the earlier described (Ref 5) w-nitrom-chlorostyrene is a solid compound. Similar to the para-isomer the preparation obtained must have the structure of m-nitro-a-chlorostyrene (IX). Also the hitherto undescribed 3,5-dinitro- (X) and 2,4-dinitro phenyl chloromethyl carbinol (XI) was synthesized by nitration of nitric acid ester of m- and p-nitrophenyl chloremethyl carbinol with subsequent saponification into strongly acid medium in the presence of urea. From carbinol (X) the dichloride (XII) was then obtained with PCl₅, which in the separation of HCl yielded 3,5-dinitro-a-chlorostyrene (XIII). The attempt of obtaining p-nitroω-chlorostyrene (III) by separating water from p-nitrophenyl chloromethyl carbinol could be carried out best, in order to obtain better yields, by heating carbinol (I) with phosphoric acid anhydride at 100°. The styrene (III) yield was 47% (besides its racemate (XIV) (4%)). By the same method the styrenes (XV) and(XVI) resulted by separating water from the corresponding carbinols. Compound (XVII) was formed as side product of the latter. It was shown that, in contrast to the meta-isomer, p-nitro- ω -chlorostyrene has a mobile

Card 2/3

507/79-29-9-61/76

Synthesis of the Nitro Derivatives of W-Chlorostyrene

halogen which made it possible to synthesize compounds (XVIII) -

(XX). There are 7 references, 4 of which are Soviet.

ASSOCIATION: Institut organicheskoy khimii Akademii nauk Ukrainskoy SSR (Institute of Organic Chemistry of the Academy of Sciences

of the Ukrainskaya SSR)

SUBMITTED: July 18, 1958

Card 3/3

VISHNEVSKAYA, G.O.; GORBUNOVA, A.S.; ZHELOBENKO, V.A.; FIALKOV, Yu.A.;
SHEVCHENKO, O.I.; XAGUPOL'SKIY, L.M.

Synthesis of the preparation bilignost. Med. prom. 14 no.9:25-30 (MIRA 13:9)
S '60.

1. Kiyevskiy khimiko-farmatsəvticheskiy zavod im. M.V. Lomonosova. (ADIPIC ACID)

80761

S/079/60/030/04/54/080 B001/B002

5.3610

And the second

AUTHORS:

Yagupol'skiy, L. M., Butlerovskiy, M. A., Belinskaya, R. V.,

Ivanova, V. I.

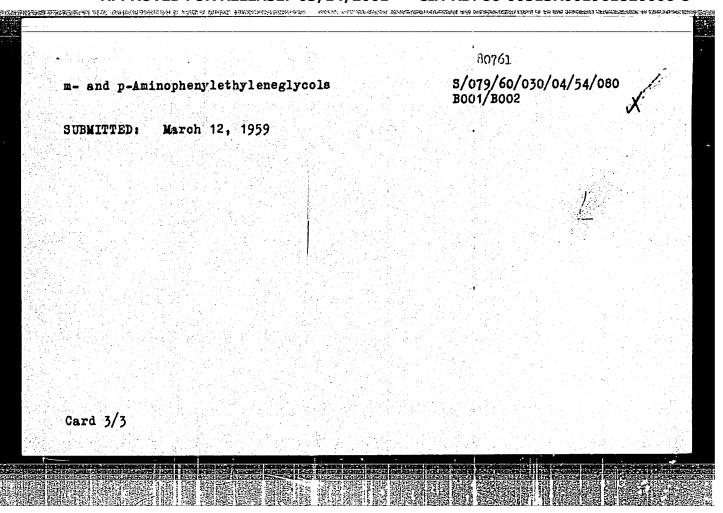
TITLE:

m- and p-Aminophenylethyleneglycols

PERIODICAL: Zhurnal obshchey khimii, 1960, Vol. 30, No. 4, pp. 1288-1291

TEXT: The authors converted m- and p-nitrophenylchloromethylcarbinols (Ref. 1) which are now easily available, into m- and p-aminophenylethylene-glycols which may serve as initial substances for the synthesis of dyes and highly molecular compounds. The synthesis of m- and p-nitrophenylethylene-glycols was caused by heating of the corresponding nitrophenylchloromethyl-carbinols with potassium carbonate dissolved in water:

NO₂C₆H₄CHOHCH₂Cl ->NO₂C₆H₄CHOHCH₂OH. The two glycols which are easily soluble in water, were extracted with ether or dichloroethane. m-nitrophenylethyleneglycol was also obtained by saponification of diacetyl derivative (II), according to Scheme 2. After heating with 1% sulfuric derivative (II), according to Scheme 2. After heating with 1% sulfuric acid, the oxide of p-nitrostyrene yields p-nitrophenylethyleneglycol. The hydration process of the oxide of m-nitrostyrene is much more complicated,


Card 1/3

m- and p-Aminophenylethyleneglycols

\$/0701 \$/079/60/030/04/54/080 B001/B002

ASSOCIATION: Institut organicheskoy khimii Akademii nauk Ukrainskoy SSR (Institute of Organic Chemistry of the Academy of Sciences, Ukrainskaya SSR)

Card 2/3

ે(૧૪52

5,3600

8/079/60/030/04/55/080 B001/B002

AUTHORS:

Yagupol'skiy, L. M., Fialkov, Yu. A.

TITLE:

1-Phenyl-2-trifluoromethylethylene Phenyltrifluoromethyl-

acetylene and Their Derivatives

PERIODICAL: Zhurnal obshchey khimii, 1960, Vol. 30, No. 4, pp. 1291-1294

TEXT: The authors synthesized the vinylene homolog of benzotrifluoride (I) and the corresponding acetylene compound (II): $C_6H_5CH == CH-CF_3$ (I), $C_6H_5C = C-CF_3$ (II). The initial product used was 1-phenyl-2-trichlorometylethylene (III) which was obtained by adding trichlorobromo methane to styrene, and separating hydrogen bronide (Refs. 1,2). Most successful was the substitution of chlorine by fluorine in compound (III) by means of antimony trifluoride in dioxane, by which (I) was obtained in good yields. 1-phenyl-2-trifluoromethylethylene (I) easily forms addition compounds with chlorine and bromium, and develops two diastereoisomers which cannot be dissolved by vacuum distillation. Compound (I) does not enter into the dienesynthesis, and according to Prilezhayev it does not develop an oxide

Card 1/3

00762

1-Phenyl-2-trifluoromethylethylene, Phenyltrifluoromethylacetylene and Their Derivatives 8/079/60/030/04/55/080 B001/B002

if benzene hydroperoxide is added. Compound (II) was synthesized according to the following scheme:

In phenyltrifluoromethylacetylene the trifluoromethyl group is stable against alkali liquor, since good yields of compound (II) are obtained from (V) by action of melted KOH at 230°. Phenyltrifluoromethylacetylene easily forms addition compounds with 2 bromium atoms; further additions do not take place. Four atoms of chlorine form an addition compound with (II). Unlike bis-(trifluoromethyl)-acetylene (Ref. 6),(II) does not form addition compounds with acetic acid. All liquid compounds obtained are described in the table. The absorption maxima and extinctions of (I) and (II) in alcohol were determined. A similar shift of the absorption maximum towards shorker waves was found in the comparison between ultraviolet spectra of styrene and phenylacetylene (Ref. 9). There are 1 table and 9 references, 1 of which is Soviet.

Card 2/3

1-Phenyl-2-trifluoromethylethylene, Phenyltrifluoromethylacetylene and Their Derivatives

ASSOCIATION: Institut organicheskoy khimii Akademii nauk Ukrainskoy SSR
(Institute of Organic Chemistry of the Academy of Sciences,
Ukrainskaya SSR)

SUBMITTED: March 17, 1959

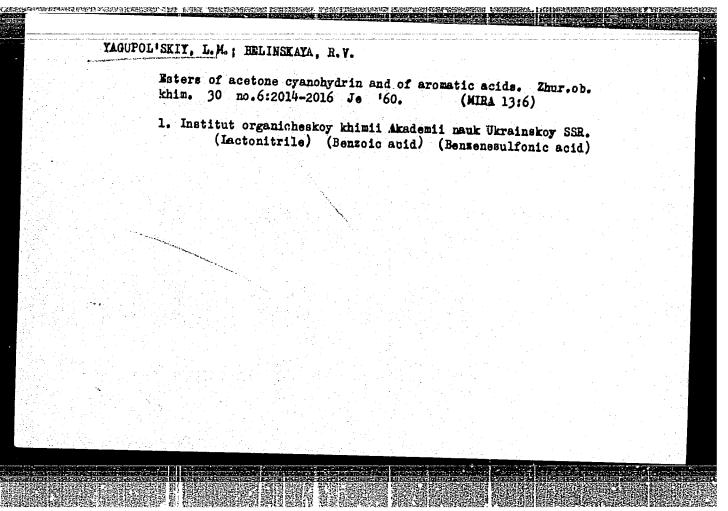
Card 3/3

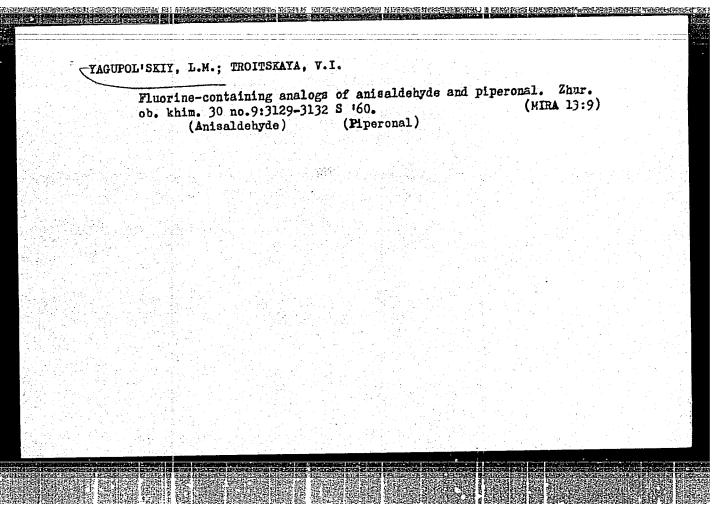
s/079/60/030/04/56/080 B001/B011 Yagupol'skiy, L. M., Yufa, P. A. Phenyl-bis-(trichloromethyl)-phosphinoxide, Phenyl Trichloromethyl Phosphinic Acid, and Their Derivatives AUTHORS: Zhurnal obshchey khimii, 1960, Vol. 30, No. 4, pp. 1294-1299 TITLE: TEXT: The authors aimed at synthesizing compounds containing a phosphorus atom linked with the benzene ring and with one or two trichloromethyl groups. PERIODICAL: The Oxide of w.w. adichlorodimethyl phenyl phosphine (Ref. 1), which was rne oxide of w,w,-qichiorodimethyi phenyi phosphine (ngi. 1), which was chlorinated at 150-2150, served as the initial product. The resulting product was the oxide of phenyl-bis-(trichloromethyl)-phosphine (I) >CGH5P(CC13)2. The oxide of w,w'-dichloro dimethyl-(pchlorophenyl) = phosphine, which was obtained from p-chlorophenyl tetrachloro-C6H5P(CH2C1)2 phosphorus and diazomethane, was chlorinated, and the oxide of p-chlorophenylcard 1/3

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R00102163888

Phenyl-bis-(trichloromethyl)-phosphinoxide, Phenyl 5/079/60/030/04/56/080 Trichloromethyl Phosphinic Acid, and Their B001/E011 Derivatives


bis-(trichloromethyl)-phosphine (II) was obtained. Both oxides (I) and (II) are colorless crystalline products and do not change on the action of aqueous acid- and alkali solutions up to 100°. They are so stable that they can be nitrated at 100° with the nitration mixture:


O=P CC13
O=P CC13
NO2
NO2

The ethyl ester of phenyl trichloromethyl phosphinic acid was taken as the initial product of the synthesis of the derivatives of the latter (Ref. 2). Investigations were extended to the reaction of ester (III) with PCl₅, with the acid chloride (IV) forming according to Scheme 2. In addition to the

Card 2/3

3 Phenyl-bis-(trichloromethyl)-phosphinoxide, Phenyl Trichloromethyl Phosphinic Acid, and s/079/60/030/04/56/080 Their Derivatives B001/B011 acid chloride (IV) there arises a certain amount of (V), according to Scheme 3. On heating the ester (III) with 3 moles of PCI Tat 100-1600; a complex (VI) is formed (Scheme 4), which, on hydrolyzing, gives rise to the acid chloride (IV) in a quantitative yield. The authors became acquainted with the article by P. Biddle, I. Kennedy, I. Willans (Ref. 3) only after having completed their own investigation (Scheme 5). A paper by G. Kamay is mentioned (Ref. 2). There are 4 references, 2 of which are Soviet. ASSOCIATION: Institut organicheskoy khimii Akademii nauk Ukrainskoy SSR (Institute of Organic Chemistry of the Academy of Sciences, Ukrainskaya SSR) SUBMITTED: May 5, 1959 Card 3/3

S/079/60/030/010/027/030 B001/B066

AUTHOR:

Yagupol'skiy, L. M.

TITLE:

1,1,3,3-Tetrafluoro Phthalane and Its Derivatives

PERIODICAL:

Zhurnal obshchey khimii, 1960, Vol. 30, No. 10,

pp. 3444 - 3448

TEXT: Considering the papers of Refs. 1-5, the author wanted to synthesize 1,1,3,3-tetrafluoro phthalane from 1,1,3,3-tetrachloro phthalane by means of antimony trifluoride. In this synthesis, however, a mixture of 1,1,3,3-tetrafluoro phthalane (I) and o-trifluoro methyl-benzoyl fluoride (II) resulted according to the Scheme

Card 1/3

1,1,3,3-Tetrafluoro Phthalane and Its Derivatives

\$/079/60/030/010/027/030 B001/B066

Compound (II) was converted into the amide by passing ammonia through the solution of the resultant mixture of (I) and (II) in petroleum ether. This amide was filtered off. 1,1,3,3-tetrafluoro phthalane, a colorless liquid melting at 153°C, was distilled off. The question as to whether the acid fluoride (II) is formed by isomerization of 1,1,3,3-tetrafluoro phthalane or by the good isomerization of 1,1,3,3-tetrachloro phthalane to the acid chloride of o-trichloro methyl benzoic acid with subsequent fluorination was examined. According to the experiments, the latter assumption is correct. It was thus shown that, unlike the corresponding chloro derivatives, 1,1,3,3-tetrafluoro phthalane and o-trifluoro methyl-benzoyl fluoride are not capable of mutual isomerization. The author also describes the synthesis of the 5-nitro-, 5-amino-, 5-cyano-, 5-carboxy-, and 5-fluoro derivatives of 1,1,3,3-tetrafluoro phthalane. The absorption spectra of all preparations are shown in three Diagrams. 1,1,3,3-tetrafluoro phthalane is stable to alkaline reagents. 6-nitro-1,1,3,3-tetrafluoro phthalane could be obtained only from 6-nitro phthalide. With dimethyl aniline, the resultant amine gives an azo dyeb (Scheme 2). There are 3 figures and 8 references: 2 Soviet, 2 US, and 4 German.

Card 2/3

1,1,3,3-Tetrafluoro Phthalane and Its S/079/60/030/010/027/030
Derivatives B001/B066

ASSOCIATION: Institut organicheskoy khimii Akademii nauk
Ukrainskoy SSR (Institute of Organic Chemistry of the
Academy of Sciences Ukrainskaya SSR)

SUBMITTED: October 30, 1959

5 3630

\$/079/60/030/012/015/027 BU01/B064

AUTHORS:

Yagupol'skiy, L. M. and Ivanova, Zh. M.

TITLE:

p-Trifluoro Methyl Phenyl Tetrafluoro Phosphorus and Its

Derivatives

PERIODICAL: Zhurnal obshchey khimii, 1960, Vol. 30, No. 12, pp.4026-4030

TEXT: The authors continued their investigation (Refs.1,2) on the synthesis of some aryl tetraphosphorus fluoride compounds, difluorides of aryl- and aryl thiophosphinic acids, and tried to synthesize the phenyl tetraphosphorus fluoride compound with an electronegative trifluoro methyl group as substituent in the molecule, and to test its stability toward hydrolysis. For this purpose, p-tolyl dichloro phosphine was produced, converted at a low-temperature by chlorination into p-tolyl tetraphosphorus dichloride, and then in the presence of azoisobutyric acid dinitrile chlorinated in the methyl group. Chlorination did, however, not proceed smoothly under various reaction conditions so that no pure products were obtained. Also the fluorination of commercial p-trichloro methyl-phenyl phosphorus tetrachloride and the dichloride of

Card 1/3

p-Trifluoro Methyl Phenyl Tetrafluoro Phosphorus and Its Derivatives S/079/60/030/012/015/027 B001/B064

p-trichloro methyl-phenyl phosphorus tetrachloride, as well as the dichloride of p-trichloro methyl-phenyl phosphinic acid with SbFz or ZnF2

proved unsuccessful. Therefore, the authors proceeded from a compound already containing a trifluoro methyl group when synthesizing p-trifluoro methyl-phenyl phosphorus tetrachloride. The authors proceeded from p-bromobenzotrifluoride, which was converted into organo-magnesium and, moreover, into organo-zinc compounds, and by means of PCl₃ into p-tri-

fluoro methyl-phenyl phosphine dichloride. The latter was chlorinated and furthermore fluorinated to p-trifluoro methyl-phenyl tetraphosphorus trifluoride by means of SbF.

trifluoride by means of SbF₃: $p-CF_3C_6H_4Br \xrightarrow{Mg} p-CF_3C_6H_4ZnBr \xrightarrow{PCI_3} p-CF_3C_6H_4PCI_2 \xrightarrow{CI_2} p-CF_3C_6H_4PCI_4 \xrightarrow{PCI_3} p-CF_5C_6H_4PCI_4 \xrightarrow{PCI_3} p-CF_5C_6H_4PCI_4 \xrightarrow{PCI_3} p-CF_5C_6H_4PCI_4 \xrightarrow{PCI_3} p-CF_5C_6H_4PCI_4 \xrightarrow{PCI_3} p-CF_5C_6H_4PCI_5$

p-CF₃C₆H₄PF₄. Various derivatives were synthesized from p-trifluoro methyl-phenyl phosphorus tetrachloride. In one of previous papers (Ref.3) it was shown that phenyl phosphorus tetrachloride reacts with diazomethane by the scheme $C_6H_5PCl_4 + 2CH_2N_2 \longrightarrow C_6H_5PCl_2(CH_2Cl)_2$.

Card 2/3

p-Trifluoro Methyl Phenyl Tetrafluoro Phosphorus and Its Derivatives

\$/079/60/030/012/015/027 B001/B064

Phenyl phosphorus tetrachloride reacts with diazomethane less vigorous'y. After the reaction products had been hydrolyzed, a crystalline acid

After the reaction products nau been my and the product was separated which was identified as $C_6H_5P = 0$, i.e., phenyl-w-CH₂F

fluoro methyl phosphinic acid. In contrast to published data it was shown that phenyl phosphorus tetra-fluoride reacts immediately with carboxylic acids, under the formation of acid fluorides. Thus, phenyl phosphorus tetrafluoride gives propionic acid fluoride with propionic acid. In order to protect the glass against HF, however, a salt of this acid (e.g., the lithium salt) was used. There are 7 references: 4 Soviet, 1 US, and

ASSOCIATION: Institut organicheskoy khimii Akademii nauk Ukrainskoy SSR

(Institute of Organic Chemistry of the Academy of Sciences Ukrainskaya SSR)

SUBMITTED: January 23, 1960

Card 3/3

YAGUPOL'SKIY, L.M.; KRASOVITSKIY, B.M.; BLINOV, V.A.; SIDNEVA, K.M.; PROBYASLOVA, D.G.

Properties of some fluorine-containing are dyes. Zhur.prikl. khim. 33 no.7:389-392 Jl 160. (MIRA 13:7)

1. Institut organicheskoy khimii AN USSR. Khar'kovskiy gosudarstvennyy universitet. Mauchno-issledovatel'skiy institut organicheskikh poluproduktov i krasiteley.

(Aso dyes)

5.3700

2209, 1318, 1312 mg

S/020/60/134/006/021/031 B016/B067

AUTHORS8

Yagupol'skiy, L. M. and Yagupol'skaya, L. N.

TITLE:

Electron Nature of the Fluorine-containing Substituents

PERIODICAL3

Doklady Akademii nauk SSSR, 1960, Vol. 134, No. 6, pp. 1381-1383

TEXT: The authors found that the physicochemical properties of several aromatic fluorine compounds (except for those substituted with fluorine atoms, and for trifluoro methyl derivatives of benzene) have not been investigated. They first determined the pK_a of the corresponding benzoic acids. For this purpose they measured the pH of the aqueous-alcoholic solutions half-neutralized with titrated NaOH solution. The pH was measured by means of a tube potentiometer M_{\bullet} 5 (LP-5) with glass electrode at 25°C. A saturated calomel electrode served as comparison electrode. Table 1 gives the results of the determination. To determine the constant ξ of the equation by L. P. Hammett (Ref. 2) $\log(k/k_0) = \xi \epsilon$ 6 the authors chose 5 substituents with exactly determined 6-constants and pK_a of the corresponding benzoic acids in aqueous ethanol. Besides Card 1/3

81,675

Electron Nature of the Fluorine-containing Substituents

S/020/60/134/006/021/031 B016/B067

r = 0.998, and s = 0.03. On the basis of ? the &constants of the new substituents in meta- and para-position were calculated. The cyclic groups CF.

and CF₂ were ascribed to the p-series on the basis of the CF₂

analogy with group CH2 as well as with tetralin and hydrindene

(Refs. ?,3). All substituents mentioned are electron acceptors or very weak electron conors. The dissociation constants of the acids mentioned are higher than those of benzoic acid, the values of the 6 constants

Card 2/3

Electron Nature of the Fluorine-containing Substituents

S/020/60/134/006/021/031 B016/B067

being positive. It appears from Table 1 that the trifluoro methyl sulfonyl group is the strongest electron-acceptor group among the known substituents in the benzene ring. p-trifluoro methyl sulfonyl benzoic acid is more than twice as strong as p-nitrobenzoic acid. This holds also for meta acids. Fig. 1 shows the dependence between the values of the 6 constants and log k of substituted benzoic acids in 50% aqueous ethanol. The authors compared the intensity and the orientating effect of some groups and they describe the positions in which individual compounds can be nitrated. There are 1 figure, 1 table, and 8 non-Soviet references.

ASSOCIATION: Institut organicheskoy kh!mii Akademi! nauk USSR (Institute of Organic Chemistry of the Academy of Sciences, UkrSSR)

PRESENTED:

June 1, 1960, by V. N. Kondrat'yev, Academician

SUBMITTED:

May 25, 1960

Card 3/3

S/020/60/135/002/029/036 B004/B056

AUTHORS:

Yagupol'skiy, L. M., Bystrov, V. F., and Utyanskaya, E. Z.

TITLE:

Investigation of the Chemical Shift of the Magnetic Resonance of Fluorine 19 Nuclei in Fluorobenzenes With

Fluorine-containing Substituents

PERIODICAL:

Doklady Akademii nauk SSSR, 1960, Vol. 135, No. 2,

pp. 377-380

TEXT: It was the purpose of the present work to investigate the effect of fluorine-containing substituents upon the electron density distribution in the benzene ring, and to determine the interrelation between the structure of these compounds and their reactivity by means of nuclear magnetic resonance (nmr). The shift in the ring of monosubstituted fluorobenzenes reacted by fluorine and referred to the resonance values of fluorine in nonsubstituted fluorobenzene was measured and determined from the equation:

 $S = (H_X - H_{C_6H_5F}) \cdot 10^6/H_{C_6H_5F}$. H_X and $H_{C_6H_5F}$ are resonance values of the Card 1/5

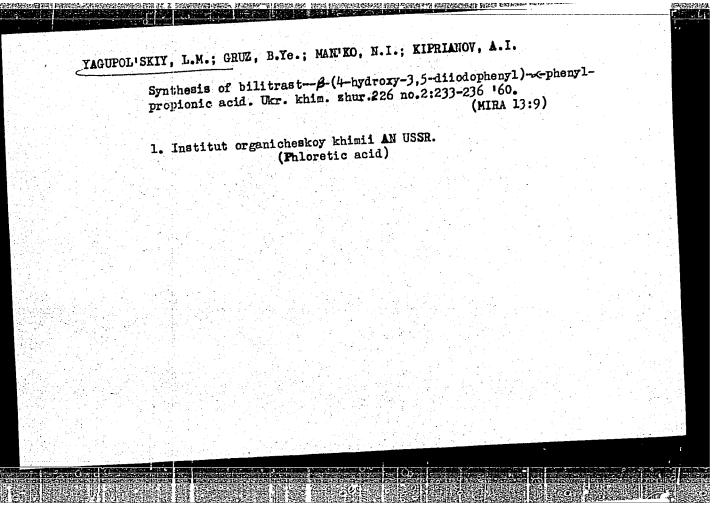
Investigation of the Chemical Shift of the Magnetic Resonance of Fluorine 19 Nuclei in Fluorobenzenes With Fluorine-containing Substituents

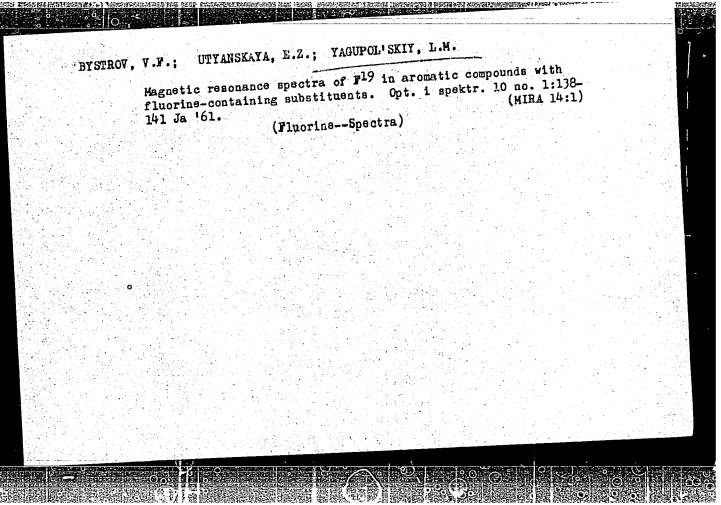
S/020/60/135/002/029/036 B004/B056

external magnetic field for F^{19} nuclei in the case of substituted (X) and nonsubstituted fluorobenzene. Apparatus and method of measurement are described in Ref. 1. The values for δ are given in Table 1 for various substituents in o-, m- and p-position. The authors discuss the data given in publications for the interrelation between δ and the Hammett constant o, in publications for the interrelation between δ and the Hammett constant o, in publications for the interrelation state of a cause a meta-position, such with positive conjunction effect of cause a meta-position, such with negative substitution effect, however, an ortho- or paraposition. Tables 3 and 4 compare the values of δ_p , of for the p-position of δ_p , of for the p-position δ_p and of δ_p , of for meta-position. Besides, Table 3 gives the light absorption δ_{max} of 4'-substituted dimethylaminoazobenzene, which changes similar to the chemical shift in p-substituted fluorobenzenes, and indicates the existence of uniform electron displacements. There are 4 tables and 9 references: 3 Soviet, 7 US, and 1 French.

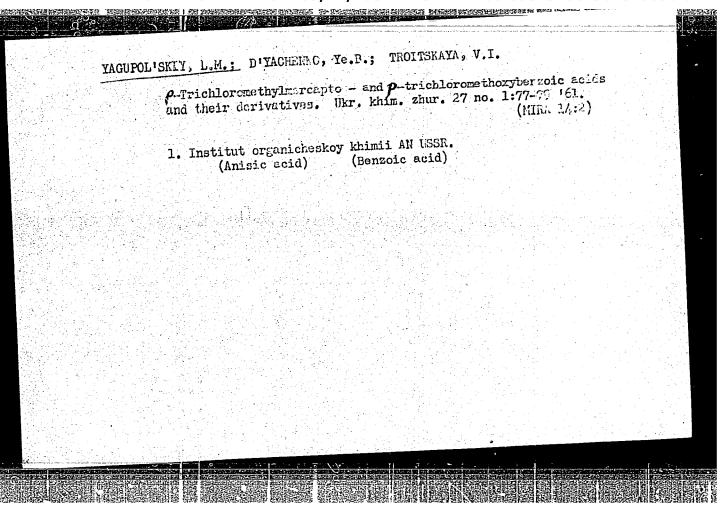
Card 2/5

Investigation of the Chemical Shift of the Magnetic Reconance of Fluorine 19 Nuclei in Magnetic Reconance of Fluorine-containing Substituents

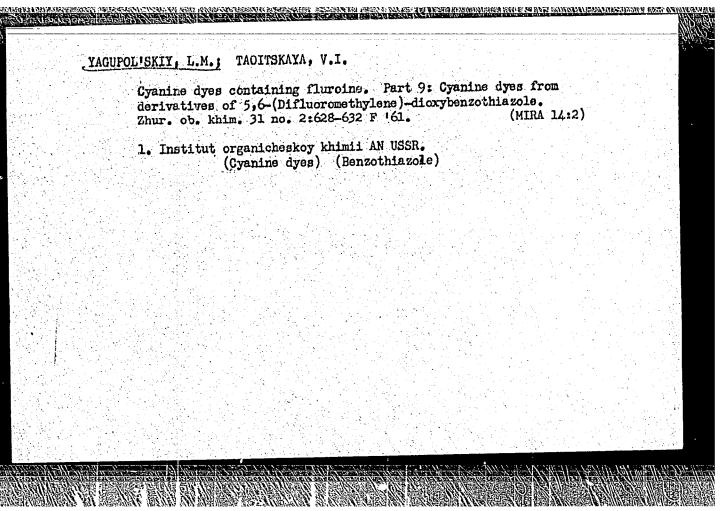

ASSOCIATION: Institut organicheskoy khimii Akademii nauk USSR (Institute of Organic Chemistrylof the Academy of Sciences UkrSSR) of Organic Chemistrylof the Akademii nauk SSSR (Institute Institut khimicheskoy fiziki Akademii nauk SSSR (Institute of Chemical Physics of the Academy of Sciences USSR)

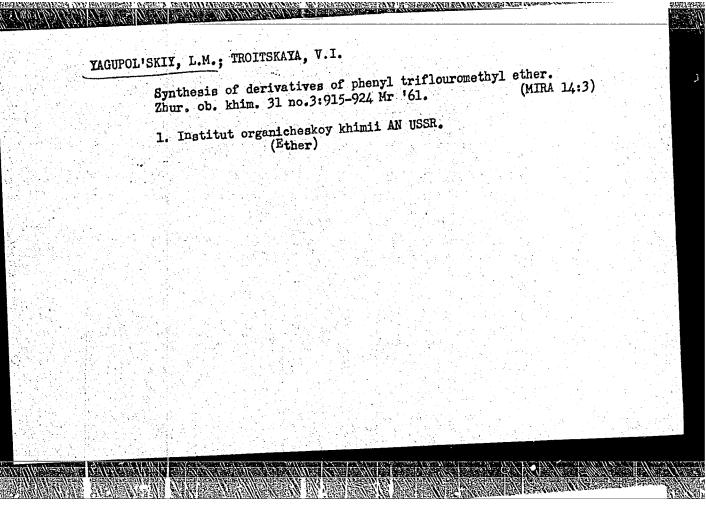

PRESENTED: June 1, 1960 by V. N. Kondrat'yev, Academician

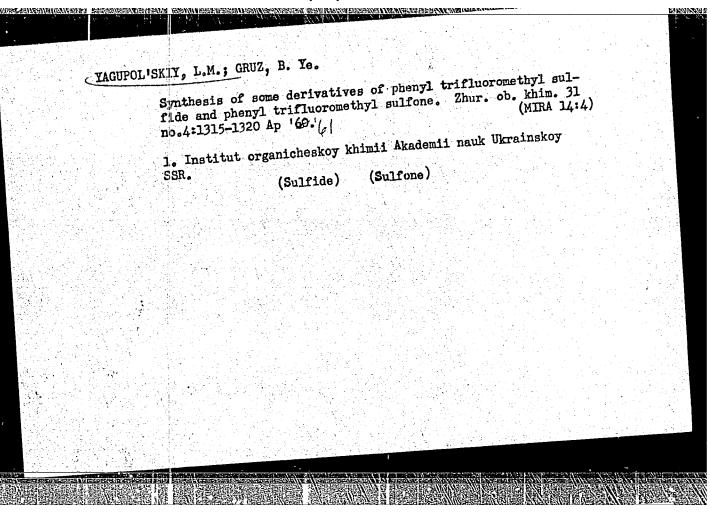
SUBMITTED: May 25, 1960.


	S/020/60/135/002/029/036 B004/B056
Химические сдвиги фтора в бензольном кольце 1) Тавве 1	Legend to Table 1: 1) Chemical shifts of fluorine in the benzene ring; 2) substituent
SO ₂ CF ₃ -8,7 -4,7 -15,1 -7,8 -2,3 +47,4 -2,3 +2,8 -2,4 C _F C	
CF: -8,6	

8	11,4 -0,27 407	.	+0.9		
 	5,5 11 408 407 507 407 507 8 11 a		+ 1 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Card 5/5	S/020/60/135/002/029/05 B004/B056
- PS	6,4 0,06 0,01 419	ij	910		Legend to Tables 3 and 4 1) Substituent, 2) (in alcohol)
9 2 5	6, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	 	-2,3 0,36	ان ق	
ម៉ឺ	2,8 419 419	SGP.	5.0 2.3	Samectatents A) SOrCP	NO SO,CH, CN CF. O COCH, CF.
5 .12	1,2 2,3 2,4 0,23 0,23 0,23 420 420	P.	_2,4	δη -15,1 ση 1,03 λ _{макс} (1), мμ (в спирте) 476	-10,8
	435 0,23 (35) (35)		0,37	SOLCE.	NO. SO,CH, CN CF.
, ,	(32, 52)	9.	-3,1 0,34	δ _M	0 -3,3 -3,0 -2,8 0,71 0,65 0,56 0,43




APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001961820006-8"



APPROVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001961820006-8"

S/079/61/031/011/006/015 D202/D305

53600

Yagupol'skiy, L. M., and Fialkov, Yu. A.

AUTHORS: TITLE:

Derivatives of the vinyl homologue of banzo-tri-

fluoride

PERIODICAL:

Zhurnal obshchey khimii, vo 31, no. 11, 1961, 3586-3593

This is a continuation of previous work in which a new compound 1-phenyl-2-trifluoro methylene has been found (cpd. I). In this investigation, the author's aim was to obtain the para and meta derivatives of the above compound. n-Bromo-styrene gave an addition product with CBrCl3 (in the presence of benzoyl peroxide), forming n-bromo-phenyl

Br-C6H4-CH-CH2-CCl3 ; a crystalline product, trichlorobromopranes

m.p. 84.5 = 85.5; after the removal of HBr, n-bromo-phenyl trichloromethylene was obtained. (Cpd. II), an oily substance, b.p. 120 = 121°C

Card 1/5

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001961820006-8"

S/079/61/031/011/006/015 D202/D305

Derivatives of the ...

(0.1 mm) & By the action of SbF3 on cpd. II it was converted to nbromo-phenylatrifluoro-methylene (cpd. III) crystals, mopo 21.5 - 22.5, bopo 115 (25 mm). This compound heated with CuCN formed (in pyridine) n-cyano-phenyl-trifluoromethylene (cpd. IV) crystals, mop. 48 = 49.5 .

Compound IV was oxidized with H₂O₂ to form n-emids (apd. V) crystals, mopo 189 = 190°. By hydrolysis of cpd. V, a necarboxy compound was obtained (cpd. VI), a crystalline product, mop. 246 = 247°. The same cpd. tained (cpd. VI), a crystalline product. Li on cpd. III—and subsequent VI was obtained by the action of butyl Li on cpd. III—and subsequent action of solid CO₂; mop. 247 = 248°. The amide V was converted into the n-amine by Hofmann's method to gives CF3-CK = CH-C6Ha-NH2 (cpd. VII) crystals, m.p. 82 = 83°, and the n-amine was converted by the action of NaNO2 and that of sodium fluo-borate into nonfluoro phenyl trifluoro methylene, b.p. $165 = 166^{\circ}$, n_{D}^{21} 1.4625, n_{A}^{21} 1.2682 (opt. VIII). By diazotization and steam-distillation. VII _ p-trifluoro methylene phenol (IX) was obtained in crystals, mopo 71.5 .. 72.5. To

Card 2/5

S/079/61/031/011/006/015 D202/D305

Derivatives of the ...

prepare meta-derivatives of cpd. I, the authors used its n-acetamide, by nitration of which a nitro compound was formed, the nitro-group in the ortho position to the acetamides

$$CF_3$$
— $CH = CH$ — NIICOCH₃ (cpd. X)

From this, by a reduction-cyclization reaction, 2-methyl-5-(trifluoro methylene)-benz-imidazol was obtained (cpd. XI). Cpd. X formed yellow methylene)-benz-imidazol was obtained (cpd. XI). Cpd. X formed yellow needles, m.p. 169 - 170, and cpd. XI had m.p. of 208 - 209°C. Cpd. X, after hydrolysis formed 4-amino-3-nitro phenyl trifluoro methylene; orange-red needles, m.p. 120 - 121; this compound, after desamination gave mitro phenyl trifluoro methylene. nitro phenyl trifluoro methylene, a crystalline product of m.p. 42.5 43.5 C. From the latter, after hydration with platinum black, mtrifluoro methylene aniline was obtained:

Card 3/5

APPROVED FOR RELEASE: 03/14/2001

CIA-RDP86-00513R001961820006-8"

S/079/61/031/011/006/015 D202/D305

X

Derivatives of the ...

; mopo 29.5°, and from it, by hydrolysis,

the corresponding phenol (cpd. XII), an oily liquid of b.p. 86° (0.2 mm). The authors investigated the action of alkali on the trifluors group of the above compounds and found that this group is much more stable towards the above compounds acid with the exception of the nephenol derivative, alkali than towards acid with the exception of NaOH and gives, after prolonged which splits off F under the action of NaOH and gives, after prolonged which splits off F under the action of NaOH and gives, after prolonged being with the alkali, necommaric acid. The vinyl group between the boiling with the alkali, group markedly diminishes its influence on the benzene ring and the -CF3 group markedly diminishes its influence on the

ring. There are 10 references: 6 Soviet-bloc and 4 non-Soviet-bloc.
The references to the English-language publications read as follows:
R. G. Jones, J. Am. Chem. Soc., 69, 2346 (1947); A. Titley, J. Chem. Soc., R. G. Jones, J. Am. Chem. Soc., 69, 236. (1910).

Card 4/5

30106

Derivatives of the

5/079/61/031/011/006/015 D202/D305

ASSOCIATION:

Institut organicheskov khimii akademii nauk Ukrainskou SSR

(Institute of Organic Chemistry, AS UkrSSR)

SUBMITTED:

December 12, 1960

Card 5/5

YAGU	2-Trifluoromethyl	Inaphthalene and its 962-3970 D '61.	(MIRA	
	l. Institut org	anicheskoy khimii AN (Naphthalene)	Ukrainskoy SSR.	

	经证据的证据 使用 医电影 医皮肤皮肤皮肤皮肤皮肤 经现代证据 医电影 医电影 医电影 医电影 医电影 电电影 电电影 电电影 电电影 电影 电影 电影 电影 电影 电影 电影	FATEUR 2
verski brokenski		
YAGI	UPOLISKIY, L.M.; GRUZ, B.Ye.	
	Cyanine dyes containing fluorine. Part 10% Cyanine dyes containing fluorine in the polymethine chain. Zhur.ob.khim. (MIRA 15%2)	
	1. Institut organicheskoy khimii AN Ukrainskoy SSR. (Gyanines)	
	1. Institut organichesko, (Cyanines) (Dyes and dyeing) (Fluorine)	N-W-ST
	살림과 경기의 이번 사람이 되면 되게 되었다면 하지만 하다고 하는 것이다.	
	요한 생활이 되었다. 일이 하는 반대들은 그래 생활을 받아 하는 것으로 가는 이번 있다.	
	공화 발표 그 사고 그래프는 그가 그 가는 이 있다고 하는데 하는데 되었다.	
	프로프스 프로마 (1985년 - 1985년 - 1985 - 1985년 - 1985 - 1985년 - 1985	
	영화 회원값이 이렇게 보는 사람이 되었다. 그 얼마나 하지 않는 사람이 되었다.	
	병원 공사를 받는 물건을 하는 것들이 되었다. 그리고 이 사람들은 사람들이 되었다.	
	수는 뭐 하다면서 그는 일반 보장 하다 하는데 그렇게 되는 그는 그 이 이 이 사는 이 모든 그는 것	
	- 1912일 : [4일 : 10] : 10 : 12 : 12 : 12 : 12 : 12 : 12 : 12	
	는 회복되다는 시시스를 하는데 맞고하다 하를 다는다는데 살아보다 했다.	
		And the second

GOROV, Yu.P.; L Infrared s derivative	pectra of 1-phose. Izv. AN SS	 ************************************	- 44 7 4	hylene and i: -1277 0 '62.	ය (MIRA 15:10)
1. Instit	bhimii moli	merov i monom e—Spectra)	erov AN Ukrs	SR.	

 a seminatives of	dipheny L. W.	difluorome the	me. Zhur,ob. (MIRA 15:6	5)
(Me tuane				
	2 3 menting 02	Synthesis of derivatives of diphenyla.a.khim. 32 no.6:1832-1836 Je *62. (Methane)	YAGUPOLISKIY, L.M.; TROITSKAYA, V.I.; MALICHENKO, B.F. Synthesis of derivatives of diphenyl.a.a.d.difluoromeths khim. 32 no.6:1832-1836 Je 62. (Methane)	(MTRA 15:6

2554410

		_
GERAS IM	ENKO, Yu.Ye.; SHEYN, S.M.; BAKULINA, G.G.; CHEREPIVSKAYA, A.P.; SEMENYUK, G.V.; YAGUPOL*SKIY, L.M.	
	Thioindigoid dyes. Part 9: Thioindigoid dyes containing fluorine. (MIRA 15:6) Zhur.ob.khim. 32 no.6:1870-1874 Je '62. (Thioindigo)	
APPRO	OVED FOR RELEASE: 03/14/2001 CIA-RDP86-00513R001961820006-	8"

S/079/62/032/009/009/01T 1048/1242

AUTHORS:

Yagupol'skiy, L.M. and Malichenko, B.F.

TITLE:

The derivatives of 1,2-diphenyl-1,1,2,2-tetrafluoroethane. I. The synthesis of 1,2-diphenyl-1,1,2,2-tetrafluoroethane-4,4'-dicarboxylic acid

PERIODICAL: Zhurnal obshchey khimii, v.32, no.9, 1962, 3035-3039

TEXT: Experimental methods for the synthesis of 1,2-diphenyl-1,1,2, 2-tetrafluoroethano-4,4'-dicarboxylic acid (or its tetrachloro analog), some of its derivatives, and some intermediate products are described. The -CF2-CF2- group in these derivatives imparts a high resistance to hot alkaline solutions. The hydrolysis of bis(n-trichloromethyl)-benzone in the presence of ferric chloride yielded n-trichloromethylbenzoylchloride which was the starting material for most of the syntheses reported. n-trichloromethyl benzoic acid was prepared by adding triethylamine to a solution of n-trichloromethylbenzoylchloride in acetone in the presence of a small amount of water; the mixture was allowed to stand overnight and mixed with a

Card 1/3

S/079/62/032/009/009/011 1048/1242

The derivatives of 1,2-diphenyl...

10% HCl solution. The methyl ester of this acid was prepared by adding methanol and triethylemine to a solution of n-trichloromethylbenbenzoylchloride in benzene. The reaction of n-trichloromethylbenzoic acid dissolved in pyridine and Cu powder yielded 1,2-diphenyl1,1,2,2-tetrachloroethane-4,4'-dicarboxylic acid, which, on boiling
with thionyl chloride, yielded the dichloroanhydride. A mixture of
this dichloroanhydride with antimony pentachloride and anhydrous HF
was heated in an autoclave to 140-165°C yielding the analogous difluoroanhydride which on hydrolysis gave 1,2-diphenyl-1,1,2,2-tetrafluoroethane-4,4'-dicarboxylic acid. The synthesis of the following
compounds are also described in detail: the dimethyl ester, the diamide, the diazide, and dissocyanate derivatives of both 1,2-diphenyl-1,1,2,2-tetraflucroethane-4,4'-dicarboxylic acid and its tetrachloro analog, as well as the synthesis of 4,4'-bis(trichloromethyl)1,2-diphenyl-1,1,2,2-tetrachloroethane.

Card 2/3

	8/079/62/032/009/009/011 1048/1242	
The dorivativ	es of 1,2-diphenyl	
ASSOCIATION:	Institut organicheskoy khimii Akademii nauk Ukrainskoy SSR (The Institute of Organic Chemistry, Academy of Sciences UkrSSR)	
SUBMITTED:	Septomber 6, 1961	
다. 다리 : 100 - 100	생활하는 것이 되었다. 그는 사람들은 경우 사람들은 기가 되었다. 그는 것이 되었다. 그는 것이 되었다. 하는 것이 되는 것이 되었다. 사람들은 사람들은 것이 되었다.	
	현실에 대한 경험에 발견되었다. 현실 보험 경우 기계를 보는 것이 되었다. 그는 것이 되었다. - 사용물은 보면 사용물로 경우를 받는 것이 받아 돌을 제한 것이 되었다. 그 것이 되었다.	
	하다 당시하고 하는 하고 하고 하는데 보고 되었다. 그 생각 그 사이 있는데 그리고 있는데 그 사이 되었다. 이 살고 있는데 하고 말았다. 그 사이를 하는데 하고 있는데 그리고 있는데 그리고 있다.	
	고 있다는 생각이 있는 것이 말라고 있다. 그들은 사람이 가장 하는 것이 되었다. 그는 것이 되었다. 2007년 1일 전 1일	
Card 3/3		
	골든 경우 이 사용을 보면 보고 있는 사람들은 보는 사람들은 보는 사람들은 보고 있습니다.	

VISHNEVSKAYA, G.I.; KHASKIN, I.G.; BUTLEROVSKIY, M.A.; YAGUFOL'SKIY, L.M.;
LITVINCHUK, O.D.; YAKOVLEVA, V.Ya.; GORBUMOVA, A.D.; KIRIYENKO, S.S.

Preparation of syntomycin by dichloroacetylation of l-p-nitrophenyl-2-mminoethanol. Ukr. khim.zhur. 29 no.9:947-950 (MIRA 1734) 163.

1. Institut organicheskoy khimii AN UkrSSR.

GITIS, S. S.; GLAZ, A. I.; YAGUPOL'SKIY, L. M.

Reactions of aromatic nitro compounds. Part 14: Effect of some electron acceptor groups on the reaction of re-esterification. Zhur. ob. khim. 33 no.1:138-141 '63.
(MIRA 16:1)

1. Institut organicheskoy khimii AN UkrSSR.

(Esterification) (Nitro compounds)

Sa _y me	ponification of nit thylcarbinol. Zhur	tric esters, d , ob. khim. 33	erivatives of p-nit no.1:309-314 163. (MIRA 16:1)	LobusnAr	
1.	Institut organiche	akoy khimii A	n ukrssr.		
			(Saponification)		
			영 수 이 등을 받는 것이다. 4. 일 간 있는 가는 나이를 다		
* 4.23.6					
기 등 하는 것이					

YAGUP	OL'SKII, Lafie	; KONDRATENKO, N.V.		ar - 1 lehim	
	Aryl sulf	onyltrifluoromethyl 20-928 Mr '63.	sulfonylmethanes.	Zhur.ob.khim. (MIRA 16:3)	
		tut organicheskoy l (Sulfone)	chimii AN UkrSSR. (Methane)		

YAGUPOL'SKIY, L.M.; CANDEL'SMAN, L.Z.

Diazastyryls with fluorine-containing substituents. Zhur.ob.khim.
33 no.7:2301-2307, J1 '63.

1. Institut organicheskoy khimii AN UKrSSR.
(Diazo compounds) (Dygs and Weing)

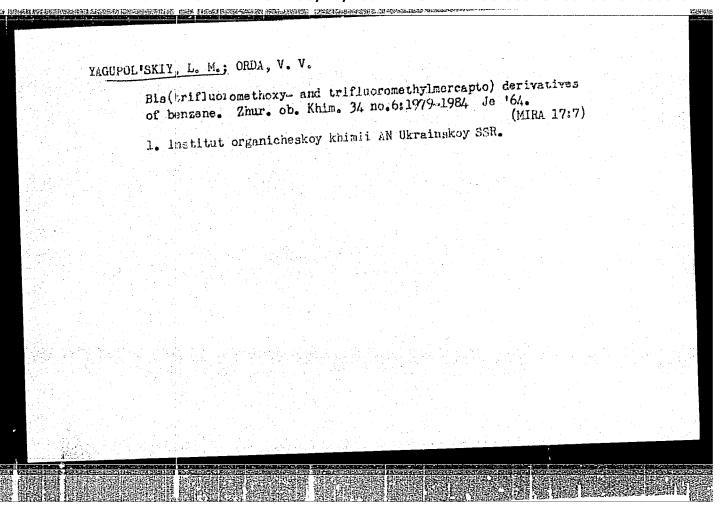
a part of the same	SKIY, L.M.: BELINSKAYA, Fluorination of derivat Zhur.ob.khim. 33 no.7	ives of 1,1,. 2:2358-2364	11 163.	((MIRA 16:8)	
	1. Institut organichesk	ov khimii AN				
					•	

YAGUPOL'SKIY, L.M.; VISHNEVSKAYA, G.O.; KAGANOVSKAYA, M.I.

Analogs of syntomycin containing trifluoromethyl-, mercapto-, and trifluoromethylsulfonyl groups. Zhur. ob. khim. 33 no.8; 2721-2723 Ag '63. (MIRA 16:11)

1. Institut organicheskoy khimii AN UkrSSR.

BYSTROV, V.F.; YACUPOL'SKIY, L.M.; STEPANYANTS, A.U.; FIALKOV, Yu.A.


6 -Constants of substituents with a trifluoremethyl group.
Dokl. AN SSSR 153 no.6:1321-1324 D'63. (MIRA 17:1)

1. Institut khimicheskoy fiziki AN SSSR. Predstavleno akademikom V.N. Kondrat'yevym.

YAGUPOL'SKIY, L.M.; KLYUSHNIK, G.I.; TROITSKAYA, V.I.

Cyanine dyes containing fluorine. Part 11: Synthesis of cyanine dyes from fluorine derivatives of 2-methylbenzimidazole. Zhur.ob.khim. 34 no.1:307-11

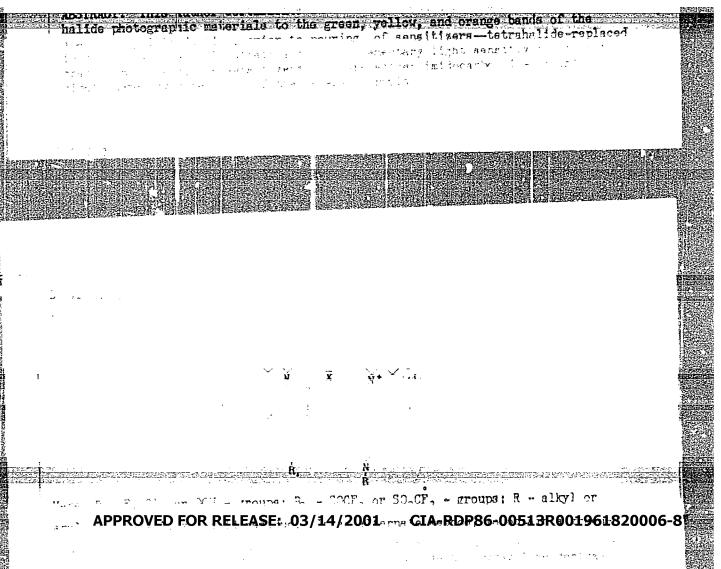
1. Institut organicheskoy khimii AN UkrSSR.

YAGUPOL'SKIY, L.M.; PANTELEYMONOV, A.G.; ORDA, V.V.

Magnesium and lithium derivatives of trifluoromethylmethylsulfone and their reactions. Zhur. ob. khim. 34 no.10:3456-3462 0 '64.

(MTRA 17:11)

1. Institut organicheskoy khimii AN UkrSSR i Institut khimii polimerov i monomerov AN UkrSSR.


YACUPOL'SKIY, L.M.; BYSTROV, V.F.; STEPANYANTS, A.U.; FIALKOV, Yo.A.

Effect of the substituents with a trifluoromethyl group on the reactivity of aromatic compounds. Zhur. ob. khim. 34 no.11 s
(MIRA 18:1)

1. Institut organicheskoy khimii AN UkrSSR i Institut khimicheskoy fiziki AN SSSR.

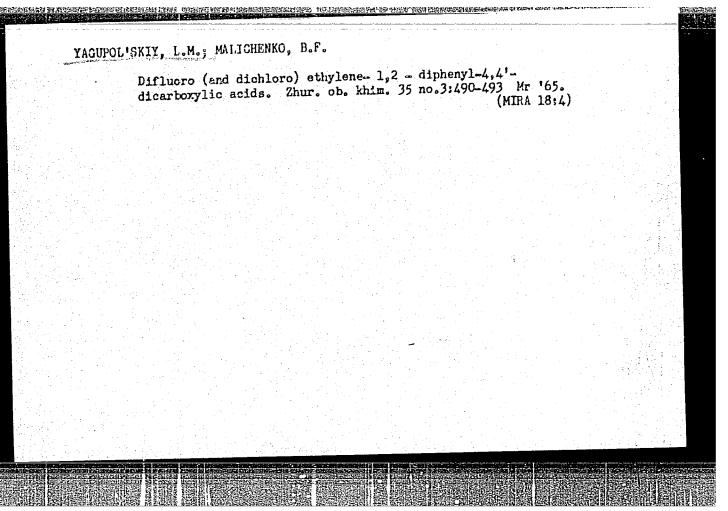
GRUZ,	B. Ye.; STERLIN, R.I.; YAGUPOL'SKIY, L.M. Reaction of Neath orthogminothiophenol with perfluoroacryl chloride. Zhur. ob. khim. 34 no.12:4122-4123 D '64 (MIRA 18:1)	
	1. Institut organicheskoy khimii AN UkrSSR.	

	en e		
•			
_			
	·	$\phi_i(\mathbf{x},\mathbf{y}) = (\mathbf{y}_i + \mathbf{y}_i) \cdot \mathbf{x} \cdot \mathbf{y}$	
		• · · · · · · · · · · · · · · · · · · ·	
		The state of the s	
Sale Control of the	•		
•			
		was the translation materials. Class if,	
Ac. 25 40			
		2 30/5 0/	
SOURCE: Byulletin' i	zobreteniy i tovarny	n znakov, no. 2, 1965, 86	ĮLS.
•		and the termorbia amulation color	
monto tio". Who have	inky nantamannii ma'	carial, photographic emulsion, color	
		the Maria Carlo	
4.4	1. 4.4	en grande en de la companya de la co	

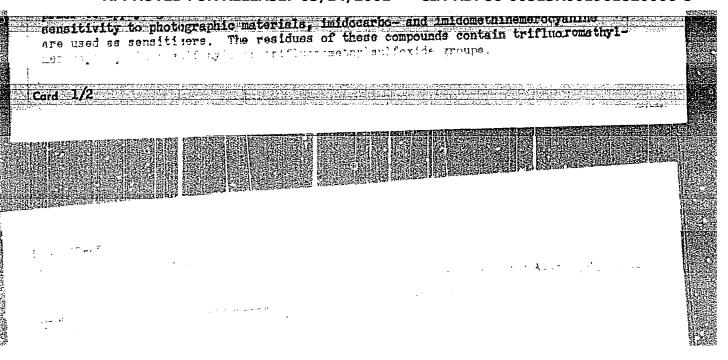
sensitive layer in layered materials, after the introduction of sensitizers, the

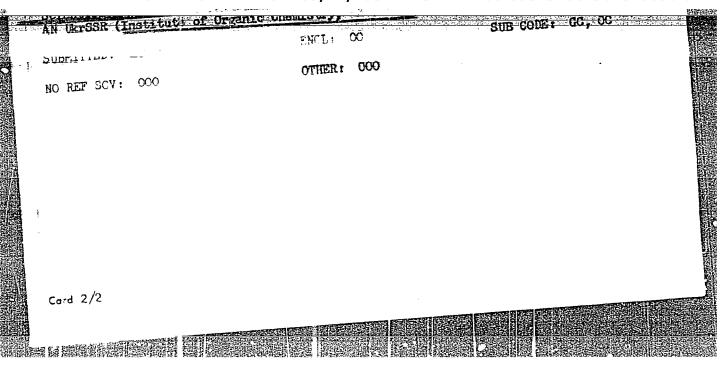
ing the last of the second of the season of the second of

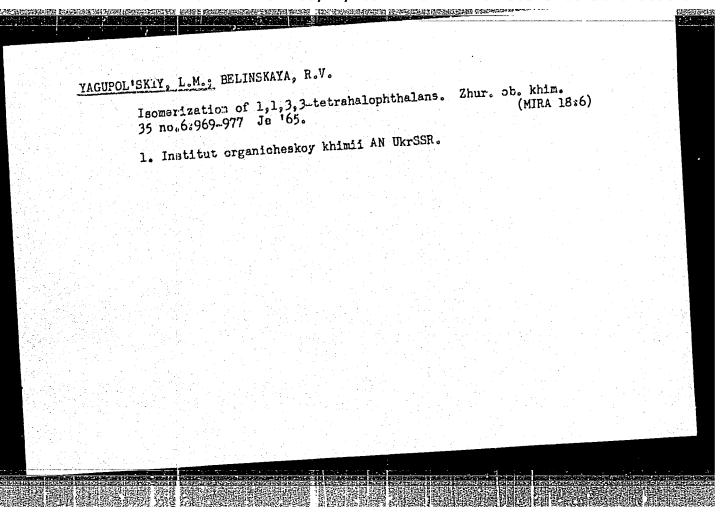
KULIK, V.F.; YECOROV, Yu.P.; PANTELEYMONOV, A.G.; FIALKOV, Yu.A.; YAGUPOL'SKIY,

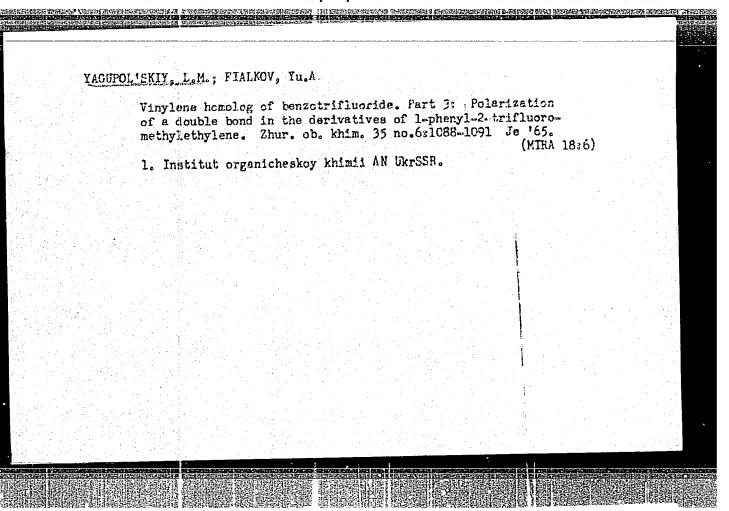

Electronic interaction and infrared spectra of para-derivatives of benzene X - C6H₄ - Y - CF₃. Teoret. i eksper. khim. 1 no.2:171-178 (MIRA 18:7) Mr-Ap '65.

1. Institut khimii vysokomolekulyarnykh soyedineniy AN UkrSSR, Kiyev i Institut organicheskoy khimii AN UkrSSR, Kiyev.

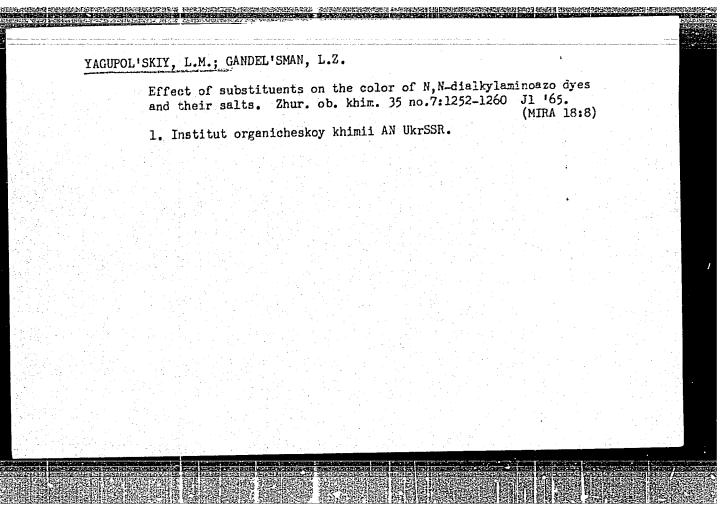

ORDA, V.V.; YACUPOL'SKIY, L.M. [IAhupol's'kyi, L.M.]; BYSTROV, V.F.; STEPANYANTS A.U.

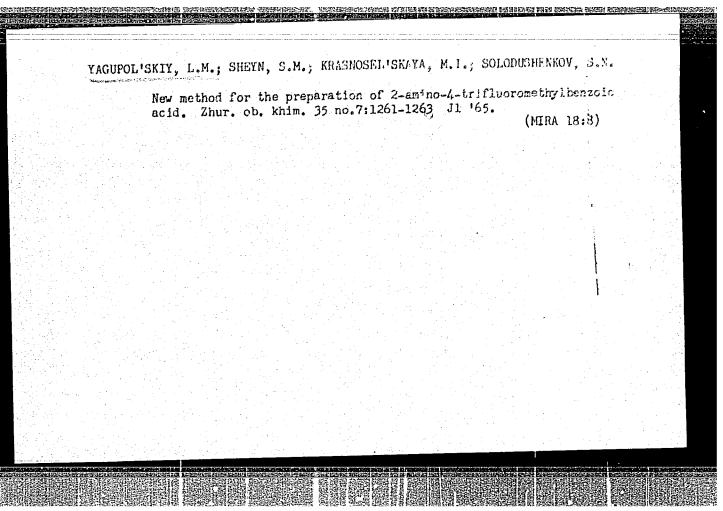

Transmission of the induction effect of SCF₃ - SOC?₃ and SO₂CF₃ substituents through the methylene group. Dop. AN URSR no.3:345-348 '65. (MIRA 18:3)

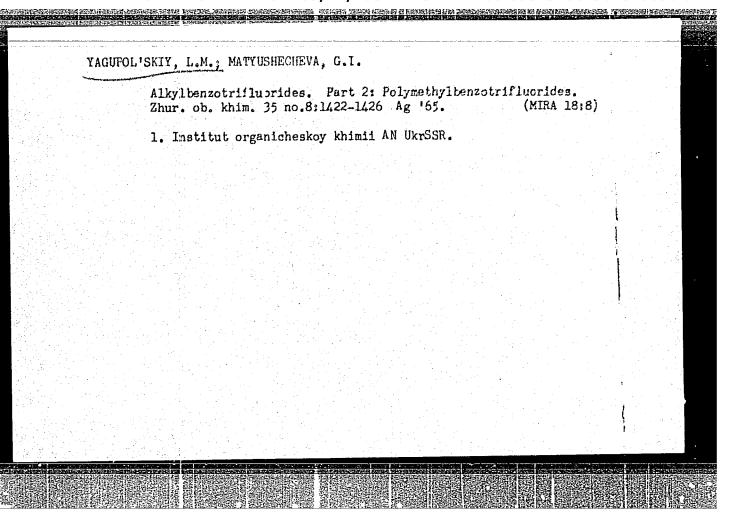

1. Institut organicheskoy kh⁴-ii AN UkrSSR.



ANCHAS: This is a paristicate reserts a manage of sensitions of the contract to the great property and prants and property to the contract of the great sensitions and the contract of the con






YAGUPOL'SKIY, L.M.; PANTELEYMONOV, A.G.

Trifluoromethylmethylsol'oxide. Zhur. ob. khiz. 35 no.6:1120
(MIRA 18:6)
Je '65.

1. Institut organicheskoy khimii i Institut khimii vysekomolekulyarnykh soyedineniy AN UkrSSR.

YAGUPOL'SKIY, L.M.; MALICHENKO, B.F.

1,2-Diphenyl-1-1-2-2-tertrafluorocthane derivatives. Part 3;
Effect of 4,4'-substituents of 4,8-diffluoroctilene on the addition of fluorine. Zhur. ob. khim. 35 no.9:1561-1564 S'65.

(MIRA 18:10)

1. Institut organicheskoy khimii AN UkrSSR.

YAGUPOL'SKIY, L.M.; TROITSKAYA, V.I.

1,2-Diphenyl-1,1,2,2-tetrafluoroethane derivatives. Part 4:
Amino derivatives of 1,2-diphenyl-1,1,2,2-tetrafluoroethane.
Zhur. ob. khim. 35 no.9x1612-1620 5 '65. (MIRA 18:10)

1. Institut organicheskoy khimii AN UkrSSR.

ORDA, V.V.; YAGUPOL'SKIY, L.M.; HYSTROV, V.F.; STEPANYANTS, A.U.

Transmission of the induction effect of substituents SCF₃, SOCF₃, and SO₂CF₃ through a methylene group. Zhur. ob. khim. 35 no.9:1628-1636 S'65. (MIRA 18:10)

1. Institut organicheskoy khimii AN UkrSSR i Institut khimicheskoy fiziki AN SSSR.

GRUZ, B.Ye.; YAGUPOL'SKIY, L.M.

2-(β,β,β-Trifluoroethyl) benzothiazole, 2-(α,β,β,β-tetrafluoroethyl) benzothiazole and their reactions. Zhur. ob. khim. 35 no.9s1639-1644 S '65.

1. Institut organicheskoy khimii AN UkrSSR.